\‘.‘w.('\";..’f\ \:,“,\w.| oo r[;;Z;J[‘[?.ff;?'

Usage Scenarios for a Common Feature Modeling Language

Thorsten Berger and Philippe Collet

‘ um!rersité

Nice

l Soppia Antipolis

Membre de UNIVERSITE COTE DAZUR 4

&%) CHALMERS | {8} UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

feature modeling

Feature Oriented Domain Analysis (FODA) by Kang et al. 1990
FODA succeeded for its simplicity

searching for “feature modeling*
alone yields 13,500 results
on google scholar

oo
20 o S %\\)d‘& qon 3
YoM ; NG \\ .
d QQ((\ . 9"3‘236\\0 NG _\'“\\ g‘f&’ o \QX\"E’ 2 ‘\@’3 C
. e(\\e‘) ?‘\ Q- o) ,a(\é %\;‘5 Q‘{Q\i
Q‘\ 5 x,.,QL ' ?OO 9% G‘\j wa‘e‘ . Q.'ay\
\‘\)(3) :\()g) 1S & o - d\gﬁo a 0 \\;g\‘.‘: C
{2 @ W2 008 adl® " 00" | ar? A
A0 ¥ .\ G pO e\ \(\g‘ \1\3\“ . (ef\a
O\a’(~ /{D ‘\:} a\“ Q\ia\"\s \\S\e 5‘; *;._’a«\\(\ “\ é() C‘K’\\G
SG\\ IS ,}Q\S\ ? 6 dﬁ‘(\ \?‘Xe\‘\‘ Q\\S\‘afi\?;.%@ e(e‘)‘g%e g,‘ w . - Q@ &\)‘e'%
60 g\@ o‘,\ e“\e“ 5?\\(\3‘:‘21 (e\)%:‘e %\3‘5\\-’2‘“\ < “\G\iﬁ q e(eg;\O\’\ do Aa\“ 3 Q‘e‘ . a(cxi\\a{;\d-\\
g e gt SR w0 (007 A0° 46\ ?
= \“(a G cov \SON 4 <0 N o \ SO s o0
= ?ea =\ RN e\a\e c\‘&?’?’ (\-\G\e \(\Qd RS - \)\:X\‘ <
) \/\3\‘\‘3‘ \}Gc,\% 5 e e0? el ok ® e‘&\“ es
KO® T e \ k@ et P a 00 ood
P A\ e © oW 9P A O
.) -
; W o e u“c)(b N\ o otV e %d\ 0 %\e P o e o a\®
P g0 AV £ SV el 0 nd® (e e
Jne? ‘}j\'{ .pie RS \)\5‘3\\“ e & Ae T (gof ofe" peaV®
(C) Thorsten Berger, ‘b;;‘a\lamsrzrﬂ {(llj\vgrsity of Gothenburg B (‘\@S‘l\' Cer \(e,‘é " Qﬁ 5 { %?mn\\%‘“\) \(\é\\?\\ el A o a\\\‘e‘ %\g\e\a

Methodology

initial meeting at SPLC’18 in Gothenburg
agreement on scenario-driven methodology, brainstorming
first set of 15 usage scenarios (voted)
two researchers assigned (typically, one writing, another proofreading)

scenarios described mid September to mid October 2018

survey to evaluate scenario clarity and usefulness
created by David
distributed via the initiative’s mailing list
15 responses

analysis and refinement
upon results, refined and extended the scenario
also removed and added (very) few

14 refined scenarios

scenario:
name
short description
example

notes (e.g., specific requirements
or open questions)

What is the usefulness/priority of the scenario?

u Sefu I n eSS/p r| O nty 1 (not useful at all), 2 (not useful), 3 (more or less), 4 (useful), 5 (very useful).

Writing, reading, and editing- (_® ————

Model generation = = — e

Exchange = I@

Testing - == ® —

Teaching and Learning - — e]

Decomposition and composition = e= O —
Storage = — e |
Configuration - == @ J—]
Model weaving -
Benchmarking - — ¢

Domain modeling = — o]

_ _ _ Analyses - =m——=—""""9o¢]
Mapping to implementation = 4]

a preliminary roadmap

idea: incrementally build the language to make progress
second evaluation, of the refined and extended usage scenarios?

re-open the discussion about further scenarios that need to be realized
e.g., collaborative creation of feature models discussed at workshop, but not formulated

devise first set of features from scenarios perceived most useful:
Exchange, Storage,
Domain Modeling, Teaching and Learning,
Mapping to implementation, Model generation,
Benchmarking, Analyses

scenario

description

example

details

Exchange

The language should support the bidi-
rectional exchange of feature models be-
tween different tools. Tool vendors use
the language documentation and/or ex-
isting serializers/deserializers to create
important and expert functionality. Users
of the tools can then leverage this functi-
onality to export a feature model from
one tool and import it in the other tool.

A feature model is created in the
source tool FeatureIDE [55] and
then exported into a file with the
concrete syntax of the language.
The file can then be imported into
the FAMA framework [57] for spe-
cialized feature-model analyses.

Requirements:

The language should have a serializable concrete syntax.

The language should come with sufficient documentation about its ab-
stract and concrete syntax to realize importers and exporters.

Ideally, serializers and deserializers are provided for the language in the
form of a library (in common programming languages, especially Java)
that can be used by tool vendors.

The language may be extensible and an instance may describe the level
of extensions that is used.

The language may provide concepts to store tool-specific data.

Storing tool-specific data should not require changing the language or
provided serializers and deserializers.

Open questions:

Should tool-specific data be kept in specific language concepts or should
there be tool-independent concepts to store any kind of tool-specific data?
Finding a middle ground might be necessary.

Storage @

The language should allow tools to ef-
ficiently store and load feature models.
Tools can use the language and its con-
crete syntax as the primary means to
store models. Tool vendors leverage the
language specification to realize fast
storage and loading of models. Two sub-
scenarios are possible: (i) the model is
stored in a database, and (ii) the model is
stored in a textual representation.

Consider a new product line tool
that needs to store feature models.
The tool vendor can develop its per-
sistence layer by creating levera-
ging the language specification (Le.,
the abstract syntax definition) to de-
rive a database schema and generate
CRUD functionality as well as initi-
alize the database.

Requirements:

The language should come with an abstract syntax definition in a meta-
modeling notation that can be used for automated processing (e.g., gene-
rate database schemas).

The language should come with a concise and succinct [49] textual syntax.
The textual syntax should be defined in a common technology for defining
concrete syntaxes, such as an ANTLR or an Xtext grammar, both of which
can be used for automated processing.

Open questions:

Select a language workbench (e.g., Xtext [16], MPS [15], EMF [53]) or a
parser-generator technology (e.g., ANTLR [45])?

Teaching and
learning @

The language should be easily usable for
teaching. Specifically, it should be possi-
ble to describe the language within a few
slides, using concepts typically taught
in computer science education (e.g., ty-
pes, grammars, meta-modeling). Further-
more, the language’s concepts should
align well with the typical and establis-
hed concepts (cf. Sec. 2) that have been in-
troduced in the product-line community
and are typically taught in SPL courses
(features, attributes, constraints).

The teacher describes the language
with fewer than a dozen slides, and
the students are able to read and
write simple examples afterwards.

Requirements:

The language should have the typical visual concrete syntax of feature
models.

The language should come with realistic examples (ideally extracted from
real-world models, such as the Linux kernel models [13], but toy models
can also be provided for simplicity, such as from SPLOT [39].

Ideally, the language also has a concrete textual notation to illustrate how
to scale models.

Open questions:

Teach the textual or graphical notation?

How to keep the language simple, while being expressive?

There is a need to understand the specific examples to be provided.
Should there be different levels to be taught? (corresponding to different
levels in teaching)

When teaching, can we easily relate the key concepts of the language
with standard concepts taught im computer science such as requirements,
components, modules (e.g., “a feature can represent a requirement”)

Model
neration

O

ge-

Model generation (a.k.a., instance genera-
tion) automatically creates instances (mo-
dels) of the language, typically aiming at
instances with certain properties, such as
size, coverage of language concepts, or ot-
her structural characteristics (e.g., cross-
tree constraints ratio [8, 40, 50]). Tool de-
velopers can use it to generate a set of
models, useful for functional testing and
performance testing of the ditferent tools
supporting the language.

A tool developer launches the in-

stance generation tool, inputs the
desired properties of the model to
be generated, and obtains the desi-
red model(s).

Requirements:
e The language specification (syntax and semantics) should allow for a

translation of the complete semantics into a representation in a formal
language.

The formal language should allow instance generation (e.g., Alloy), with
instances that can be expressed in the original language’s syntax (so,
instantiated model in the formal lanugage should be structurally similar
to the target model in the new feature-modeling language).

Ideally, the instance generation can be interactive, also showing con-
flicting constraints and counter-examples.

Domain
modeling O

Analyses ©

The language should support early and
creative software-engineering phases by
allowing concept/domain modeling in
terms of features. Specifically, it should
allow creating features in a hierarchy,
without having to specify feature value
types, feature kinds (mandatory, optio-
nal), feature cross-tree relationships, or
whether they belong to a feature group.
The model can be gradually refined with
those concepts later. Furthermore, if ty-
ped relationships are supported, hard and
soft (e.g., recommends) constraints could
be distinguished, the latter can be defined
for each model.

The language can be used in automa-
ted analysis processes where the model
is used as input and an analysis result
is obtained. This can comprise analyses
confined to the feature model [6, 29] or
those that take other artifacts into ac-
count [42, 54].

A user creates an empty model and
in parallel adds features (that are
simply characterized by their na-
mes) and organizes them in a hier-
archy. She adds cross-tree relation-
ships if she finds it useful and
quickly re-organizes the hierar-
chy when the domain model be-
comes more clear. Later, when the
structure is more stable, she defi-
nes which features are mandatory,
which optional, as well as she defi-
nes the other concepts.

Consider a Linux distribution, such
as Debian. Let us assume the packa-
ges (each representing a feature)
and their dependencies are descri-
bed using our language (or, more re-
alistically, are transformed from De-
bian’s manifests into a feature mo-
del). An off-the shelf analysis, such
as “dead features” can then be used

to detect packages that are not se-
lartabkla

Requirements:

e The language should provide a simple and human-readable textual con-
crete syntax.

e The language should have a concise and succinct textual syntax.

¢ The language should rely on conventions and defaults that allow omitting
the explicit instantiation of concepts (e.g., when not specific, the default
feature type should be Boolean).

e The textual syntax could be inspired by Clafer (cf. Sec. 2).

Open questions:

e Domain/concept modeling might require: multiple feature instantiation
(cardinality-based feature modeling, cf. Sec. 2) as well as multi-level mo-
deling and ontological instantiation [18]. However, supporting these con-
cepts (as is supported by Clafer), could complicate the language.

¢ Support typed relationships?

Requirements:

¢ Community agreement on a core set (or class) of relevant analyses.

¢ Consider different solver strategies depending on the kinds of analyses
and the constructs of the language. For instance, if we allow attributes,
then, specific solver capabilities are needed.

e Well-specified language syntax and semantics, also with semantic ab-
stractions into the different logical representations required by the sol-
Vers.

Open questions:

e [s the representation of correspondence (and maybe performance) of the

crlirivieo ctratacdiae +m HFhea difFararnt ~armcetriete arnd avtarcimarme mart oF Flha

Benchmarking The language should be designed for tool
support, and several implementations are
expected to be available. There should be
a well-defined set of indicators to mea-
sure the performance of the most rele-
vant operations (e.g., analysis, refacto-
ring, configuration completion), so to be

O

Mapping
to imple-
mentation

O

able to compare them.

The benchmarking setup would allow to
compare tool support execution times of
these operations in isolation (e.g., wit-
hout taking into account file loading or

The user loads the model with
FAMA [57], Familiar [4] or Feature
IDE [55] and executes the operation
‘dead features, also measuring the
completion times. Then she knows
which is the best tool for that ope-
ration and model.

Each tool built upon the language
can run the common benchmark
and automatically produce an ex-
ploitable performance result.

feature model parsing times when focu-

sing on a reasoning operation).

Feature models are often not only consi-
dered in isolation. Instead, features are ty-
pically mapped to certain assets. Depen-
ding on the use case, features are map-
ped to requirements, architecture, design,
models, source code, tests, and documen-
tation, among others. While the actual
mapping is largely independent of the
feature modeling language, it should be
possible to distinguish features that are
supposed to be mapped to artifacts from
those purely used to structure the hier-
archy (e.g., to group certain features into
an alternative group) or features that are
not yet implemented. So, the scenario is
to support developers mapping features
to the implementation.

Suppose we implement a product
line incrementally. That is, we have
done a domain analysis in which we
created a feature model and now we
implement more and more of those
features over time. Assume we want
to derive a product or count the
number of possible products before
we are done with the implementa-
tion of all features. During confi-
guration, we do not want to make
decisions that do not influence the
actual product. For counting, we
are not interested in the total num- e
ber of valid configurations, but only

in those that result in distinct pro-
ducts.

Requirements:

e Well-engineered and specified syntax and semantics of the language.

e There should be an agreement on the specificatin of certain feature-model
operations.

e The availability of realistic models is important. Potentially, real-world
models from the systems software domain can be used (cf. Sec. 2)

Requirements:
¢ A single modifier/keyword to be assigned to every feature could be suffi-

cient (e.g., abstract/concrete as in FeatureIlDE)

e A well-defined mapping language might be necessary.
¢ Avoid common limitations. For instance, a simple language rule as applied

in GUIDSL, such that every feature without child features in concrete
and all others are abstract, would result in unintuitive editors and overly
complex feature models if a feature with child features is supposed to be
mapped to artifacts.

e A challenge is that this property is not be supported in many tools. Fall-

back could always be to mark all features as concrete during import/export
(could be default).

Open questions:

Should the mapping be part of the language or realized in a separate one?

a preliminary roadmap

Exchange:

a simple textual language seems to meet the scenario’s challenges
Storage:

realize using a common language workbench (e.g., Eclipse EMF with Xtext) or YAML/JSON technology
Domain Modeling:

capability to incrementally and partially create a feature model is needed
Teaching and Learning:

simplicity of the language for writing, editing, and configuring should be kept in mind.
Model generation, Benchmarking, and Analyses

could be easy to meet if propositional feature models chosen as first level of expressiveness
Mapping to implementation

not easy scenario to meet

still open problem, depending on types of artifacts and variability realization techniques

10

discussion

design and implement first kernel of functionalities at same time?
Implementation enables scenario validation automatically (continuous integration)
for implementation, important design decisions:
fluent API
external or internal DSL, or
clever combination
validation
use scenario Analyses with its first example (dead-feature detection) as first validation
discuss other useful analysis scenarios
similarly, use the Benchmarking scenario? (first example is a benchmark for dead-feature computation)
initial kernel of a language

strip down Clafer into language levels?

11

paper with detailed scenario descriptions:
http://www.cse.chalmers.se/~bergert/paper/2019-modevar-fml-scenarios.pdf

12

http://www.cse.chalmers.se/%7Ebergert/paper/2019-modevar-fml-scenarios.pdf
https://forms.gle/HaG2reNZwWKCMQzm7

also thanks to:
Mathieu Acher, Maurice Ter Beek, David

Benavides, José A. Galindo, Rick Rabiser, Klaus
Schmid, Thomas Thum, and Tewfik Ziadi

Usage Scenarios for a Common Feature Modeling Language

Thorsten Berger and Philippe Collet
<thorsten.berger@chalmers.se>,
<philippe.collet@univ-cotedazur.fr>

' Uni!rersité

Nice

. Soppia Antipolis

Membre de UNIVERSITE COTE DAZUR 4

) CHALMERS |

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

mailto:%3cthorsten.berger@chalmers.se
mailto:%3cphilippe.collet@univ-cotedazur.fr

	Usage Scenarios for a Common Feature Modeling Language
	feature modeling
	Methodology
	14 refined scenarios
	usefulness/priority
	a preliminary roadmap
	Slide Number 7
	Slide Number 8
	Slide Number 9
	a preliminary roadmap
	discussion
	Slide Number 12
	Slide Number 13
	Clafer: unified class and feature modeling
	CVL architecture
	Slide Number 16
	feature models in practice
	feature modeling extensions

