

Cool Features and Tough Decisions A Comparison of Variability Modeling Approaches

https://doi.org/10.1145/2110147.2110167 https://doi.org/10.1145/3307630.3342399

Andrzej Wąsowski

ITU Copenhagen Denmark wasowski@itu.dk

Klaus Schmid

Univ. Hildesheim Germany schmid@sse.unihildesheim.de

Rick Rabiser

JKU Linz Austria rick.rabiser@jku.at

Paul Grünbacher

JKU Linz Austria paul.gruenbacher @jku.at

Krzysztof Czarnecki

Waterloo

Univ. Waterloo Canada czarnecki@acm.org

VaMoS – Leipzig, Germany, January 2012

Context – Why a Comparison?

- Numerous variability modeling (VM) approaches exist today
- Most based on feature modeling (FM) or decision modeling (DM)
 - Surveys on FM or on DM exist -- so far, no systematic comparison
- Many cool features have been added to FM and DM over the years
- Its tough to decide which approach to use for what purpose
- We aim to
 - Systematize the research field and explore potential synergies
 - Improve the understanding of the range of VM approaches
 - Provide insights to users adopting VM in practice
 - Help with the standardization of VM
- Goal is NOT to find out which is better but to point out commonalities and differences – FM and DM are converging!

Background and History

FM

DM

features – end user's understanding of the general capabilities of systems in the domain – and the relationships among them

- FODA method (1990)
- Many, many extensions, e.g.,
 - Group cardinalities [Riebisch et al. '02]
 - Feature cardinalities [Czarnecki et al. '05]
 - Feature inheritance [Asikainen et al. '06]
- Integral part of FOSD
- Several surveys, e.g., [Hubaux et al. 2010, Schobbens et al. 2006, etc.]

set of **decisions** adequate to **distinguish among the members** of a product family useful to **guide** the adaptation of **application engineering** work products

- Synthesis method (1991)
- Diverse approaches, e.g.,
 - FAST [Weiss and Lai 1999]
 - DOPLER [Dhungana et al. 2011]
 - Schmid and John [Schmid and John 2004]
- Most inspired by industrial applications
- Survey [Schmid et al. 2011]

Examples

	decision name	description	type	Range	cardinality/constraint	visible/relevant if
	GSM_Proto- col_1900	Support GSM 1900 protocol?	Boolean	true false		
DM	Audio_Formats	Which audio formats shall be supported?	Enum	WAV MP3	1:2	
	Camera	Support for taking photos?	Boolean	true false		
	Camera_Resolu- tion	Required camera resolution?	Enum	2.1MP 3.1MP 5MP	1:1	Camera == true
	MP3_Recording	Support for recording MP3 audio?	Boolean	true false	ifSelected Audio_For- mats.MP3 = true	

tabular notation, combining concepts from [Schmid and John 2004] and [Dhungana et al. 2011]

Development of our Comparison

- Started at Dagstuhl Seminar on FOSD in Jan 2011
- Extraction of 10 dimensions from existing surveys, i.e., Berger et al. ASE 2010 and Schmid et al. VaMoS 2011
- Several meetings and telephone conferences
- Our results are based on:
 - our experiences as experts in DM/FM
 - our knowledge of the literature in these fields
 - other comparison frameworks
 - discussion with other people in the community
 - reviewers' detailed comments

Dimension	Feature Modeling	Decision Modeling			
Applications	div. applications : concept modeling, variability and comm. modeling; derivation support	variability modeling; derivation support			
Unit of variability	features	decisions			
Orthogonality	mostly used in orthogonal fashion	orthogonal			
Data types	comprehensive set of basic types				
Hierarchy	essential concept, single appr.	secondary concept, div. appr.			
Dependencies and Constraints	no standard constraint language but similar range of approaches (Boolean, numeric, sets)				
Mapping to artifacts	optional aspect (no standard mechanism)	essential aspect (no standard mechanism)			
Binding time and mode	not standardized, occasionally supported				
Modularity	no standard mechanism; feature hierarchy plays partly this role	no standard mechanism; decision groups play partly this role			
Tool aspects	mainly trees	div. vis. incl. tree, workflow			

Unit of variability: key concepts that are used to model variability

FM

- Features
- Highly overloaded term
- Characteristic of a concept (e.g., system, component, etc.) that is relevant to some stakeholder of the concept

DM

- Decisions
- Differences among systems
- Anything that an application engineer needs to decide during derivation

Mobile Phone example

GSM 1800 is mandatory \rightarrow is a feature, but no decision needed.

Engineer "only" needs to decide whether a particular phone will support the GSM 1900 protocol or not.

Data types: available primitive values and composite structures for configuration

FM

- Boolean implicit in optional features
- composite types by relying on hierarchy, group constraints, and feature cardinalities
- Some support reference types values are references to instances of other features

DM

- Boolean either explicit or encoded as an enumeration
- All DM notations offer enumerations as primitive data types and some offer records or sets or both

Comparable range in FM and DM

Many FM and DM notations support additional primitive types, including strings, integers, and reals. Synthesis includes even date and time.

Hierarchy: organization of units of variability

FM

- Supported in all approaches as an essential concept
- Feature hierarchy imposes configuration constraints
 - selecting a feature implies selecting its parent

DM

- Secondary concept
- Supported differently by approaches, e.g., decision groups or visibility conditions
- To guide configuration process

decision name	visible/relevant if		
Camera			
Camera_Resolution	Camera == true		

Hierarchy: organization of units of variability

FM

- Supported in all approaches as an essential concept
- Feature hierarchy imposes configuration constraints
 - selecting a feature implies selecting its parent

DM

- Secondary concept
- Supported differently by approaches, e.g., decision groups or visibility conditions
- To guide configuration process

Phone

Both FM and DM support hierarchy.

The main difference is that FM follows a single approach while in DM all approaches differ.

Mapping to artifacts: features or decisions just abstract variabilities in dev. artifacts

FM

- Optional aspect
- Supported by several approaches

- Essential aspect
- Supported by all approaches

DM

Wide range of mapping techniques in both DM and FM.

Typically decisions or features (high-level variability abstractions) are related to variation points (locations in artifacts where variability occurs).

Some DM and FM approaches define a separate artifact model.

"Take-away" Message **4 key differences** of FM and DM

FM

- Focus on modeling commonalities and differences
- Hierarchy essential with uniform semantics
- Mapping to artifacts optional
- Focus on analysis and modeling

DM

- Focus on modeling differences
- Hierarchy secondary with varied semantics
- Mapping to artifacts essential
- Focus on application engineering

More commonalities than differences; differences are mainly historical!

Conclusions

- Significant convergence between FM and DM
 - practical VM approaches combine concepts from FM and DM
- Specific capabilities of a VM approach are much more important when selecting an approach than classification as DM or FM
 - data types offered, expressiveness of the constraint language, support for modularity, available tool support

Added for MODEVAR: towards a simple, standard variability modeling language

- support the typical basic data types known from programming languages and some type of composite
- be orthogonal and independent of specific artifacts
- provide a simple and clear concept to realize hierarchy and modularity
- offer a simple and expressive way to define constraints and dependencies including mapping to concrete artifacts
- support different use cases such as domain analysis or product configuration, but have a clear focus on the core use case: variability modeling
- consider binding time and mode
- be as tool-independent as possible, i.e., allowing to define models with standard text editors as well as fully-fledged IDEs